Theory of the optical properties of segregated (InAs)/(GaSb) superlattices

Rita Magri
 Dipartimento di Fisica and INFM Università di MO e RE, Modena, Italy

Alex Zunger
 NREL, Golden, Colorado
 USA

Why to study segregation and interfacial disorder effects?

(for example on the optical spectra)

• <u>First Reason</u>: because some deviations from interfacial abruptness are <u>always</u> present in real samples.

(Steinshnider et al. PRL 85,4562 (2000)

- Sb within InAs
- As and In within GaSb
- Interfacial broadening
- Normal (InAs-on-GaSb) IF rougher and more intermixed than inverted IF (Feenstra et al. PRL 72,2749 (1994)
- GaAs-like IF rougher than InSb-like IF (Twigg et al. Philos. Mag. 7,7,(1998)

Possible effects on the gaps of InAs/GaSb SLs and MQWs

• Vurgaftman et al.

JAP 89,5815 (2001)

fit the measured
gaps to 8-band k·p
theory to extract an
average VBO for
InAs/GaSb.

- Differences between average offsets derived using data from different groups
- Differences as large as 100 meV for structures that are nominally similar!

Different
microscopic
morphology
(for nominally
identical structures)

Conspicuous
differences in gaps

Our EPM

• SL Symmetry Effects

Atomistic approach - we fully solve the single-particle Schrödinger equation where the SL potential is the sum of the atomic screened potentials. This takes into account fully the $(D_{2d} \text{ or } C_{2v})$ SL symmetry.

$$V(\underline{r}) = \sum_{na} y_a (|\underline{r} - \underline{R}_{na}|)$$

where

$$v_{\mathbf{a}}(|\underline{r} - \underline{R}_{n\mathbf{a}}|) = \sum_{q} e^{iq \cdot (r - R_{n\mathbf{a}})} v_{\mathbf{a}}(|q|) [1 + \mathbf{d}v]$$

and

$$v_{a}(|q|) = a_{0}^{a} \frac{q^{2} - a_{1}^{a}}{a_{2}^{a} e^{a_{3}^{a} q^{2}} - 1}$$

is a continous function of q

Environmental Effects

Appropriate potentials for the interface bonds In-Sb and Ga-As

We fit the EPM to:

- experimental gaps
- exptl effective masses
- exptl hydrostatic and biaxial deformation potentials
- LDA-predicted single band edge deformation potentials
- band offsets

of ALL the binary compounds: GaSb, InAs,GaAs and InSb.

Atomic pseudopotentials of Ga in GaSb and in GaAs are different

The potential on each atom is specific of its n.n. environment

$$v_{\text{In}}(\text{As}_{n}\text{Sb}_{4-n}) = \frac{n}{4}v_{\text{In}}(\text{InAs}) + \frac{4-n}{n}v_{\text{In}}(\text{InSb})$$

Strain Effects

Our EPM include a parameter fit to the gap and band edge deformation potentials.

$$dv_{na}(e) = a_4^a \operatorname{Tr}(e)$$

Atomic positions R_{na} in the crystal are locally displaced by a VFF approch

Capabilities of the EPM

IF specific offsets

To describe

- IF wavefunction localization
- alloying effects at IF

Gap bowing parameters of ternary alloys

Brief summary of the results for the abrupt superlattices

Abrupt (InAs)_n/(GaSb)_n SLs

Anticrossing period in agreement with experiment

Anticrossing semiconducting band gap

Smaller gap 2-8 meV

• Magri et al., PRB 61,10235 (2000)

Abrupt (InAs)₈/(GaSb)_n SL's

Arrows - calculated transition energies

Interface Interdiffusion Models

We consider two models:

Model I: <u>The Single-Layer Disorder</u>
 <u>Model</u>

(to study the effect of the *nature* of the interfacial bonds)

• Model II: The Kinetic Model of MBE growth

(to study the effect of atomic segregation)

Model I: the single-layer model of interfacial disorder

We start from:

the composition of the interface anion plane is changed CONTINOUSLY

What happens to the electronic structure?

Wavefunction Amplitude Squared (arb. units)

Electron and hole wavefunctions

Interband transition energies

• Gap 50 meV higher for Ga-As interfacial bonds than for In-Sb IF bonds

Model II: The kinetic model of MBE growth

• Cations: $E_{In/Ga}^{b-->s}$ (subsurf $In \leftrightarrow surf Ga$)

 $E_{In/Ga}^{s-->b}$ (subsurf $Ga \leftrightarrow surf In$)

• Anions: $E_{Sb/As}^{b-->s}$ (subsurf $Sb \leftrightarrow surf As$)

 $E^{s --> b}_{Sb/As} \text{ (subsurf As} \longleftrightarrow \text{surf Sb)}$

Model II - The kinetic growth model: the rate equations

• The rates of the exchange reactions depend on the growth temperature T_g $P_i = \mathbf{n}_i \exp(-E_{A/B}^i / k_B T_g)$

• The rate of change of the concentration $x_A(t)$ of surface A atoms is:

$$\frac{dx_A^s(t)}{dt} = \Phi_A(t) + P_{A/B}^{b \to s} x_A^b(t) x_B^s(t) - P_{A/B}^{s \to b} x_A^s(t) x_B^b(t)$$

• Under the conditions of the conservation of A atoms, of the total number of atoms and: $x_A^b(t) + x_B^b(t) = 1$

For cations: $E_{In/Ga}^{b-->s} = 1.8 \text{ eV}$, $E_{In/Ga}^{s-->b} = 2.0 \text{ eV}$ (Dehaese et al. APL 66, 52 (95))

No values in the literature for the anions

The barrier energies for anions

FIG. 4. Segregation profiles constructed from interleaving even (open symbols) and odd (closed symbols) samplings of the As planes in SL_1 (left) and SL_2 (right). Solid lines are fits to Eq. (1).

Steinshnider et al., PRL 85,4562 (2000)

- Fit the growth model to exptlSb profiles
- $E_{Sb/As}^{b \rightarrow s} = 1.68$ eV
- $E_{Sb/As}^{s \to b} = 1.75$ eV
- r = 0.25 ML/s

Model II

Superlattice segregation profiles

 $(InAs)_8/(GaSb)_8$

We assume random atomic arrangements in the (001) planes perpendicular to growth direction consistent with the planar composition profile dictated by the growth model

 Atomic positions crystal are locally displaced by a VFF approach

Modification of the heavy hole localization and of the IF potential with segregation

Model II

Effects on transition energies

(InAs)₈/(GaSb)₈

• Large blue shift of heavy hole - e₁ transitions (50 meV for hh1- e₁)

DEPENDENCE ON GROWTH TEMPERATURE

M. J. Yang, W. J. Moore, B. R. Bennett, and B. V. Shanabrook, Electron. Lett. 34, 270 (1998)

PL intensity (laser structures) varies rapidly with growth temperature – Optimal range is 400-450 °C

Surprisingly, PL peak (energy gap) also increases significantly with T_{growth} above 450 °C!

In-plane Polarization Anisotropy

When symmetry is C_{2v} :

$$\frac{I^{e \to h}(\vec{p} | [110])}{I^{e \to h}(\vec{p} | [\overline{1}10])} \neq 1$$

InAs/AlSb superlattice

Fuchs et al. in "Antimonide-Related Strained-Layer Heterostructures"

$(InAs)_8/(GaSb)_{16}$

$$\boldsymbol{r} = \frac{\left| P_{110} - P_{-110} \right|}{\left[P_{110} + P_{-110} \right]}$$

- decrease of lh1-hh2 coupling
- decrease of in-plane PA

Summary

- We have modeled interfacial interdiffusion and disorder to study the effects of:
 - (1) Interfacial Bonds (Model I)
 - (2) Atomic Segregation (Model II)

Results

- Band Gaps are lower (50 meV for n = 8 SL's) with InSb Ifs than with GaAs Ifs.
- The **hh1 wavefunction** is strongly localized on the In-Sb IF bonds (relative pinning of its energy).
- Segregation:

- Normal IF: anion intermixing and IF broadening
- In penetration into GaSb
- As segregation at the inverted IF
- Segregation causes blue shifts of band gaps.
 - 1 ML narrowing of the InAs well
 Reduction of hh1 localization on the
 - Reduction of hhl localization on the InSh IF